3.641 \(\int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=381 \[ \frac{2 b^2 \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac{4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}}+\frac{2 \left (3 a^2-3 a b-2 b^2\right ) \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a^2 d (a-b) (a+b)^{3/2}}+\frac{4 b \left (3 a^2-b^2\right ) \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a^3 d (a-b) (a+b)^{3/2}} \]

[Out]

(4*b*(3*a^2 - b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -
((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^3*(a - b)*(
a + b)^(3/2)*d) + (2*(3*a^2 - 3*a*b - 2*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a +
b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/
(a - b)])/(3*a^2*(a - b)*(a + b)^(3/2)*d) + (2*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*
Cos[c + d*x])^(3/2)) - (4*b*(3*a^2 - b^2)*Sin[c + d*x])/(3*a*(a^2 - b^2)^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos
[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.731584, antiderivative size = 381, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2802, 2993, 2998, 2816, 2994} \[ \frac{2 b^2 \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac{4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}}+\frac{2 \left (3 a^2-3 a b-2 b^2\right ) \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a^2 d (a-b) (a+b)^{3/2}}+\frac{4 b \left (3 a^2-b^2\right ) \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{3 a^3 d (a-b) (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(5/2)),x]

[Out]

(4*b*(3*a^2 - b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -
((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^3*(a - b)*(
a + b)^(3/2)*d) + (2*(3*a^2 - 3*a*b - 2*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a +
b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/
(a - b)])/(3*a^2*(a - b)*(a + b)^(3/2)*d) + (2*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*
Cos[c + d*x])^(3/2)) - (4*b*(3*a^2 - b^2)*Sin[c + d*x])/(3*a*(a^2 - b^2)^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos
[c + d*x]])

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 2993

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[(2*(A*b - a*B)*Cos[e + f*x])/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[
d*Sin[e + f*x]]), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^{5/2}} \, dx &=\frac{2 b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{2 \int \frac{\frac{1}{2} \left (3 a^2-2 b^2\right )-\frac{3}{2} a b \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )}\\ &=\frac{2 b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}}+\frac{2 \int \frac{\frac{3 a^2 b}{2}+\frac{1}{2} b \left (3 a^2-2 b^2\right )+\left (\frac{3 a b^2}{2}+\frac{1}{2} a \left (3 a^2-2 b^2\right )\right ) \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}\\ &=\frac{2 b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}}+\frac{\left (3 a^2-3 a b-2 b^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx}{3 a (a-b) (a+b)^2}+\frac{\left (2 b \left (3 a^2-b^2\right )\right ) \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}\\ &=\frac{4 b \left (3 a^2-b^2\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{3 a^3 (a-b) (a+b)^{3/2} d}+\frac{2 \left (3 a^2-3 a b-2 b^2\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{3 a^2 (a-b) (a+b)^{3/2} d}+\frac{2 b^2 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{4 b \left (3 a^2-b^2\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.2511, size = 1296, normalized size = 3.4 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(5/2)),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*((2*b^2*Sin[c + d*x])/(3*a*(a^2 - b^2)*(a + b*Cos[c + d*x])^2) +
(4*(3*a^2*b^2*Sin[c + d*x] - b^4*Sin[c + d*x]))/(3*a^2*(a^2 - b^2)^2*(a + b*Cos[c + d*x]))))/d + ((-4*a*(3*a^4
 - 5*a^2*b^2 + 2*b^4)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2
]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c +
d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a
 + b*Cos[c + d*x]]) - 4*a*(-6*a^3*b + 2*a*b^3)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*C
os[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[A
rcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b
)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*
Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi
[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^
4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(-6*a^2*b^2 + 2*b^4)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*C
os[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[
Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*C
ot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*C
sc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]]
, (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b
)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x]
)*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)
/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt
[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(3*a^2*(a - b)^2*(a + b)^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.638, size = 2741, normalized size = 7.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-2/3/d/a^2/(a+b)^2/(a-b)^2/(a+b*cos(d*x+c))^(3/2)*(-4*cos(d*x+c)^2*a*b^4-2*cos(d*x+c)*a^2*b^3-5*cos(d*x+c)^3*a
^3*b^2+cos(d*x+c)^3*a*b^4-6*cos(d*x+c)^2*a^4*b-4*cos(d*x+c)^2*a^2*b^3-7*cos(d*x+c)*a^3*b^2+6*cos(d*x+c)^3*a^2*
b^3+12*cos(d*x+c)^2*a^3*b^2+6*cos(d*x+c)*a^4*b-2*cos(d*x+c)^3*b^5+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)
*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*
sin(d*x+c)*a^5+3*cos(d*x+c)*a*b^4+2*cos(d*x+c)^2*b^5+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x
+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*
a^4*b+6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3*b^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a
+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+
c)^2*sin(d*x+c)*a^2*b^3-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^4-6*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b
))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3*b^2-6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos
(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^2*b^3+2*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^4+6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*
cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b*sin(d*x+c)+
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2*sin(d*x+c)-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c)
)/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3*sin(d*x+c)-6*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),(-(a-b)/(a+b))^(1/2))*a^4*b*sin(d*x+c)-6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos
(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2*sin(d*x+c)+2*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-
b)/(a+b))^(1/2))*a^2*b^3*sin(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c
)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*b^5+2*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a
-b)/(a+b))^(1/2))*a*b^4*sin(d*x+c)+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)
))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^5*sin(d*x+c)+9*cos(d*x+c)*sin(d*x+c)*(co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d
*x+c),(-(a-b)/(a+b))^(1/2))*a^4*b+7*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(
d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2-cos(d*x+c)*si
n(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d
*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^3-2*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(
a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^4-1
2*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b^2+4*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))
^(1/2))*a*b^4-6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-
1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a^4*b-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*co
s(d*x+c)*sin(d*x+c)*a^2*b^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2
)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b^5)/cos(d*x+c)^(1/2)/sin
(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{b^{3} \cos \left (d x + c\right )^{4} + 3 \, a b^{2} \cos \left (d x + c\right )^{3} + 3 \, a^{2} b \cos \left (d x + c\right )^{2} + a^{3} \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b^3*cos(d*x + c)^4 + 3*a*b^2*cos(d*x + c)^3 + 3*a^2*b*co
s(d*x + c)^2 + a^3*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)